# Digital Circuits ECS 371 

## Dr. Prapun Suksompong

 prapun@siit.tu.ac.th Lecture 6Office Hours:<br>BKD 3601-7<br>Monday 1:30-3:30<br>Tuesday 10:30-11:30

## Announcement

- Need to do something about the office hours.
- The old office hours
- Monday 1:30-3:30PM: Conflict nth ITS325, MAS210
- Tuesday 10:30-11:30AM: Conflict with GTS211
- Let'add
- Monday 9:00-10:30
- I'm not limited to these time slots.
- Usually in my office (BKD3601-7) fom 8AM-5PM

Today

- Some of us participate in the SIIT day activities.
- So, the lecture today will contr no new material.
- We will do a lot of examples.
- These sides will be posted on the course web site later today.
- Some of them are the same as what you have as hardcopy
- At 9:30, we will have attendance check
- For those participate in SIIT D.A; Provide evidence to get checked.

Example

The associative law for addition is normally written as
a. $A+B=B+A \leftarrow$ Commutative
(b.) $A+B)+C \neq A+(B+C) \leftarrow$ Associative
c. $A B=B A$
d. $A+A B=A \leftarrow$ Covering

## Example

The Boolean equation $A B+A C=A(B+C)$ illustrates
a. he distribution law
b. the commutative law $\leftarrow \boldsymbol{X}+\boldsymbol{Y}=\boldsymbol{Y}+\boldsymbol{X}, \quad \boldsymbol{X} \boldsymbol{Y}=\boldsymbol{Y} \boldsymbol{X}$
c. the associative law $\leftarrow \mathbf{X}+(\mathbf{Y}+\mathbf{Z})=(\mathbf{X}+\boldsymbol{Y})+\mathbf{Z}$
d. DeMorgan's theorem

## Example

The Boolean expression $A \cdot 1$ is equal to
(a.) $A$
b. $B$
c. 0
d. 1

## Example

The Boolean expression $A+1$ is equal to
a. $A$
b. $B$
c. 0
(d.) 1

## Example

The Boolean equation $A B+A C=A(B-C)$ illustrates
a. the distrinution law
b. the commutat law
c. the associz lve law
d. DeM/rgan's theorem

## Review: Three Useful Rules

These rules do not exist in elementary algebra
(1) $(A+B)(\underline{\underline{A+} C})=A+B C$
(2) $\begin{aligned} & A+A B=A \\ & =A \cdot 1+A \cdot B \\ & =A(1+B)=A \cdot 1=A\end{aligned}$ Examples:
$=A+B(A+\bar{A})=A+B \cdot 1$
Examples: $\quad=\mathbf{A}+\mathbf{B}$

$$
\bar{A}+A B=\bar{A}+B
$$

$$
W \bar{X} Y+W Y=W Y
$$

$$
=\bar{x} \omega \overline{\omega Y}+\omega \bar{w}
$$

$$
9 \quad=\square=\boldsymbol{w} \boldsymbol{Y}
$$

## Principle of Duality

Any theorem or identity remains true if $\quad 0 \leftrightarrow 1$
Example:
$\bullet \leftrightarrow+$

$$
\begin{array}{rlrl}
X+1 & =1 & X+\bar{X} & =1 \\
X \cdot 0 & =0 & X \cdot \bar{X} & =0
\end{array}
$$

Caution: $X+(X \cdot Y)=X \longrightarrow x \cdot(x+y)=x$

- Parenthesize an expression/ully before taking its dual!

$$
\rightarrow \mathcal{C}_{(X+Y) \cdot(X+Z)=\{X+Y \cdot Z}(X \cdot Y)+(X \cdot Z)=X \cdot(Y+Z)(X+Y) \cdot(X+Z)
$$

factoring

## Duality Principle in Action



Example
Using Boolean algebra, simplify

$$
\begin{aligned}
& \underbrace{B D+B(D+E)}_{B D+B P+B E}+\underbrace{\bar{D}(D+F)}_{\bar{D} \underset{\sim}{D}+\bar{D} \cdot F} \\
& =B D+B E+\bar{D} F \leftarrow \text { sOP } \\
& (=B(D+E)+\bar{D} F)
\end{aligned}
$$

Example
$\underset{\text { spare }}{\text { Using Boolean algebra, simplify }}$

$$
\left.\begin{array}{rl} 
& \frac{\bar{A}}{\text { spore } C}+\underbrace{(A+B+\bar{C})}_{\leftarrow \text { De Morgen's Theorem }}
\end{array} \bar{A} \bar{B} \bar{C} D\right)
$$

Example
Show that

$$
\begin{aligned}
&(\underbrace{A+B)(A+C)}_{(A+B C)(A+D)}(A+D) \\
&==A+B C D) \\
&=\left(A+\Delta_{C_{B C}}\right)\left(A+\square_{L}\right) \\
&=A+\Delta \cdot \square=A+B C D x_{x}
\end{aligned}
$$

Example
Using Boolean algebra, simplify

$$
\begin{aligned}
& (B+B C)(B+\bar{B} C)(B+D) \\
= & B+(B C \bar{\beta} C D) \\
= & B
\end{aligned}
$$

Example
Using Boolean algebra, simplify

$$
\begin{aligned}
& \underbrace{A B(\underbrace{C D+\overline{C D}}_{1})}_{A B}+(\overline{A B}) C D \\
& =\overline{A B C D+A B(\overline{C D})}+\overline{A B+C D}
\end{aligned}
$$

Example
Using Boolean algebra, simplify

$$
\left.\begin{array}{rl} 
& A B C(A B+\underbrace{\bar{C}(B \underline{C}}_{\bar{C} \cdot(\cdot(B+A)}+A C)
\end{array}\right)
$$

Example
(Quiz 1 IT)

$$
\begin{aligned}
& \text { Using Boptean algebra, simplify } \\
& \underbrace{A \hat{B} \hat{C}+\bar{A} B C+\overrightarrow{A B} C+\overrightarrow{A B} \bar{C}+A(\hat{B} \bar{C}} \\
& \bar{A} B C+\bar{B}(\underbrace{A C+\overline{\bar{A}}}_{C(\underbrace{A+\bar{A}}_{1})}+\underbrace{\bar{A} \bar{C}+A \bar{C}}_{\bar{C}(\underbrace{\bar{A}+A}_{1})}) \\
& =\bar{A} B C+\bar{B}(\underbrace{C+\bar{C}}_{1})=\bar{A} B C+\bar{B}=B(\bar{A} C)+\bar{B}=\bar{B}+\bar{A} C
\end{aligned}
$$

Hwy 2
Example already
Using Boolean algebra, simplify posted

$$
\begin{aligned}
& \underbrace{\bar{A}+A \bar{B}}+A B \bar{C} \\
&=\bar{B}+B(A \bar{C}) \\
&=\bar{B}+A \bar{C} \\
&= \underbrace{\bar{A}+\bar{B}+A \bar{C} \bar{C}} \\
&=\bar{B}+\bar{A}+\bar{C} \\
&=\bar{A}+\bar{B}+\bar{C}=\overline{A \cdot B \cdot C}
\end{aligned}
$$

## Product Term

A single literal or a product of two or more literals.

Example: $A \cdot \bar{B} \cdot C \longleftarrow$ $\longrightarrow A \cdot C$

$$
\begin{aligned}
& A \cdot \bar{B} \cdot C \cdot D \\
& \bar{A} \cdot \bar{B} \cdot \bar{C}
\end{aligned}
$$

Caution:
$\Gamma$
$\xlongequal[A \cdot D \cdot C]{ }$ is not a product term.

$(A, B, C)=(1,0,1)$

## Example

Find the value of $X$ for all possible values of the variables when 101) 011001000100 $X=A B C+\bar{A} B C+\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C}+A \bar{B} \bar{C} \leftarrow$


## Example

Find the value of $X$ for all possible values of the variables when

| A | B | C | - |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | (1) |

